Sunday, April 21, 2024

Chloroplast (葉綠體)

https://en.wikipedia.org/wiki/Chloroplast

Cyanobacteria and the evolution of photosynthesis

Cyanobacteria remained principal primary producers throughout the Proterozoic Eon (2500–543 Ma), in part because the redox structure of the oceans favored photoautotrophs capable of nitrogen fixation[citation needed] Green algae joined blue-greens as major primary producers on continental shelves near the end of the Proterozoic, but only with the Mesozoic (251–65 Ma) radiations of dinoflagellates, coccolithophorids, and diatoms did primary production in marine shelf waters take modern form. Cyanobacteria remain critical to marine ecosystems as primary producers in oceanic gyres, as agents of biological nitrogen fixation, and, in modified form, as the plastids of marine algae.[17]

Symbiosis and the origin of chloroplasts

Chloroplasts have many similarities with cyanobacteria, including a circular chromosome, prokaryotic-type ribosomes, and similar proteins in the photosynthetic reaction center.[18][19] The endosymbiotic theorysuggests that photosynthetic bacteria were acquired (by endocytosis) by early eukaryotic cells to form the first plant cells. Therefore, chloroplasts may be photosynthetic bacteria that adapted to life inside plant cells. Like mitochondria, chloroplasts still possess their own DNA, separate from the nuclear DNA of their plant host cells and the genes in this chloroplast DNA resemble those in cyanobacteria.[20] DNA in chloroplasts codes for redox proteins such as photosynthetic reaction centers. The CoRR hypothesisproposes that this Co-location is required for Redox Regulation.

你要理解,光合作用,十分神奇,其發生機制,涉及量子物理,給地球帶來氧氣,